Frequency-Domain Adaptive Noise Cancellation

Suhas Ranganath!, Rushil Anirudh?
Department of ECEE, Arizona State University

Abstract—This article demonstrates the use of an Adaptive
Filter in Noise Canceling applications.

I. INTRODUCTION

ISCRETE-TIME filters are used everywhere in sig-

nal processing applications. Filters are used to achieve
spectral characteristics , and to reject unwanted noise or
interferences. The concept of Adaptive Filters is to alter
parameters of a filter according to a minimization algorithm
based on a reference signal. Adaptive filters can adjust its
coefficients according to the changing spectral and temporal
signal characteristics.

The adapting process involves the use of an error function,
which is a criterion for optimum performance of the filter (for
example, minimizing the noise component of the input), to
feed an algorithm, which determines how to modify the filter
coefficients to minimize the cost on the next iteration.

As the power of digital signal processors has increased,
adaptive filters have become much more common and are now
routinely used in devices such as mobile phones and other
communication devices for example - camcorders and digital
cameras, medical monitoring equipment etc.

One of the earliest applications mentioned in [1] used
for Adaptive Filtering is the cancellation of the maternal
ECG waveform in fetal electrocardiography. In this case,
the primary signal is obtained from an ECG pickup on the
mother’s abdomen. It consists of a weak, typically high rate,
ECG waveform produced by the fetal heartbeat in the presence
of large-amplitude lower-rate ECG puises at the maternal heart
rate. This signal is also usually corrupted by the presence of
muscle noise and 60Hz power line pickup. In the majority
of cases, the weak, desired fetal signal is not evident upon
visual inspection of this signal. A reference signal set xr(k) is
obtained by placing K ECG sensors on the mothers chest. The
maternal heartbeat signal observed at these sensors is strongly
correlated with that in the abdominal lead but usually has a
substantially different time waveshape caused by the difference
in transfer function between the source (heart) and the sensors.
Due to their distance from the fetus, the fetal heartbeat signal
is essentially absent in the chest lead signals.

The primary input signal (acquired by a microphone at
the source) consists of a desired signal sequence x(n) (here a
speech sample) corrupted by additive noise wy(n). A second
microphone is placed at the source of the noise and this
serves as the second input to the adaptive filter, as w(n). The
function of the adaptive filter here is to model the acoustic
path taken by the noise. This is performed by calculating an

1-1202034727 2-1203006917, Graduate Students

x[+]

o e[n]

Y
|

Fig. 1: System Identification Block Diagram[2]

error signal which is given by

e(n)=x(n)-w(n))]

This error signal is fed back to the filter as shown in
figure[1], so that its coefficients can be updated for the next
iteration. Ideally, the error signal should be able to cancel out
the noise completely giving only clean speech. Because of the
room acoustics the w(n) cannot be cancelled and the output of
the filter w’(n) approximates it. The FIR filter B(z) is needed to
model the reflections and delays in the acoustic path between
the noise source and the primary microphone.

The acoustic path is time varying because of dynamics,
movement, reflections in the room. Since the acoustic path
is time varying, we need to estimate it continuously. For this
reason an adaptive FIR Filter with transfer function B(z) is
required. The coefficients of B(z) can be estimated using a
time or a frequency-domain adaptive algorithm.

The coefficient update relation is a function of the error
signal and is given by:

2
hng1 = i) + 4 (=555

The term inside the parentheses represents the gradient
of the squared-error with respect to the i‘"coefficient. The
gradient is a vector pointing in the direction of the change
in filter coefficients that will cause the greatest increase in
the error signal. Because the goal is to minimize the error,
however, the above equation updates the filter coefficients in
the direction opposite the gradient; that is why the gradient
term is negated.The constant p is a step-size, which controls
the amount of gradient information used to update each
coefficient. After repeatedly adjusting each coefficient in the
direction opposite to the gradient of the error, the adaptive filter
should converge; that is, the difference between the unknown
and adaptive systems should get smaller and smaller.

Upon derivation [3], the final LMS coeficient update equa-
tion is

hnya[i] = hnli] + (p)(e)z[n — i

The step-size p directly affects how quickly the adaptive filter
will converge toward the unknown system. If p is very small,
then the coefficients change only a small amount at each
update, and the filter converges slowly. With a larger step-size,
more gradient information is included in each update, and the
filter converges more quickly; however, when the step-size is
too large, the coefficients may change too quickly and the
filter will diverge. (It is possible in some cases to determine
analytically the largest value of p ensuring convergence.)

II. FREQUENCY DOMAIN ADAPTIVE FILTERING

Adaptive Filtering in the frequency domain can be accom-
plished by the fourier transformation of the input signal and
independent weighting of the contents of each frequency bin.
The frequency domain filter performs similarly to a conven-
tional adaptive transversal filter but promises a significant
reduction in computation when the number of weights >

16.[4]
?-—_f__7 COMPLEX ADAPTIVE WEIGHTS
n-POINT €« A Z / n-POINT

FFT FFT-1

x; - Yin

'S €2 A t —
INPUT DELAYED
ouTPUT

DESIRED
RESPONSE

Fig. 2: LMS Adaptive Filtering in the frequency domain [4]

Adaptive filters are used in a wide variety of applications,
including statistical prediction, interference canceling, array
phasing, and channel equalization in communication sys-
tems.In the normal implementation the outputs of a tapped de-
lay line are weighted and summed under control of a recursive
algorithm to form the filter output. The most commonly used
algorithm at the present time is the Widrow-Hoff least-mean-
square (LMS) algorithm [5]. The frequency-domain LMS
as shown in figure[2] is similar in general configuration to
the time domain filter. The input signal z; and the desired
response d; however are accumulated in buffer memories to
form n-point FFT’s. Each of the FFT outputs comprises a set of
n complex numbers. The desired response transform values are
subtracted from the input transform values at corresponding
frequencies to form n complex error signals There are n
complex weights, one corresponding to each spectral bin. Each
weight is independently updated once for each data block. The
weighted outputs are not summed but are fed to an inverse

FFT operator to produce the output signal y;_,,, delayed by
the number of samples n in the input data block.

Since each weight is adapted only once for each n-point data
block, the number of adaptations required to obtain output data
similar to those obtained with the conventional time-domain
filter is reduced by a factor of n. The value of the adaptive
constant x4 may accordingly be increased by a factor of n. The
larger value of u, corresponding to less frequent adaptation,
permits a lowering of the weight resolution requirements for
the frequency-domain filter by a factor of n, so that the number
of bits required to store each weight can be reduced by log, n,
simplifying the weight update arithmetic.

The best indicator of the advantage of using FDAF is seen
in the number of multiplier operations required to produce a
given amount of data. To produce n output data points with
the conventional filter requires n? adaptations and 2n? real
multiplies. To produce the same output with the frequency-
domain filter requires (2)log, n complex multiplies for the
3 n-point FFT’s and 2n complex multiplies for the complex
weighting and weight updating. The ratio of the complex
multiplies required by the frequency-domain filter to real

multiplies required by the conventional filter is thus :
(%)log2n+2n _ 3logon+4

2n2 4n

Complex Multiplies
RealMultiplies

(2)

While the reduction in computational complexity may not

be evident for small values of n, for larger values there is
significant difference.

III. MATLAB CODE IMPLEMENTING FDAF

This section shows the MATLAB code used to implement
the Frequency Domain Adaptive Filtering for the Noise
Cancelling application in Speech. The speech signal is
processed frame by frame with N samples/frame, where N
is predefined by the user. An optimal value of N would be
a value equal to the filter length being used in the system
[2]. If N was larger then there would be a few weights in
the filter which would remain unused and hence wasted. If
N was smaller than the frame length then it would result
in redundancy. This version of FDAF implements circular
convolution, a more effective way would be to perform Linear
Convolution using Overlap and save method. The MATLAB
implementation is shown in the Appendix - B

A. Use of Other Windows

Frame by frame processing of the speech signal is equivalent
to multiplying the signal by a rectangular window. Here,
the effects of using a Kasier window with a varying 3 are
explored.

%Using the kaiser window to select the n points of the
current frame
sl (n)=diag(sampl (n)) xkaiser (N,beta);
s2 (n)=diag(samp2 (n)) xkaiser (N,beta);
Y% Transforming to the frequency domain
S1(k,:)=fft(sl(n)); S2(k,:)=fft(s2(n));

9Calculating the Error Function
S2_diag=diag(S2(k,:));
E(k,:)=S1(k,:)-B(k,:)=x(S2_diag)’;
%The recursion equation to calculate coefficients of Transfer
function B(z)
B(k+1, :)=B(k, :)+2*xmu*E (k, :)*« (S2_diag’);
9%Getting back to time-domain

e(k,:)=1ifft (E(k,:));
IV. RESULTS
These values are constructed with (=1 i.e
the normal case with a rectangular window.
N | SNRGP™ """ Subjective Rating Best u
4 2.12269 2 0.01
16 3.3426 2.5 0.0065
64 7.2628 3 0.006
128 9.6159 35 0.004
256 12.0084 4 0.0045

The following table shows the improvement in the SNR with
increasing values of 3. The best value of 1 was chosen and

used.

N | SNRGFP™ V™™ Subjective Rating j3
128 11.7385 4 2
128 12.4830 4.5 3
128 12.2034 3.5 4
256 14.2154 4 2
256 14.8727 4.5 3
256 14.27 4 4

For the speech signal corrupted by regular music

N | SNRP™ ™" Subjective Rating Best p

4 8.9120 2.5 0.01
16 10.5898 3 0.03
64 9.4909 2.5 0.007
128 7.8469 2 0.003
256 7.7925 2 0.003

Table showing changes in SNR for varying values of
the Kaiser parameter (3

N | SNRP ™" Subjective Rating J3
128 8.79 3.5 2
128 8.6920 3 3
256 8.3341 3 2
256 8.1149 3 3

V. CONVERGENCE CURVES

The Convolution Curves for different Values of N are shown
here.

Intuitively we would expect the convergence rate to be
higher with an increased value of N, since N is the frame
length and the filter length. This can be observed from the
above graphs. The convergence rates are plotted for the best
value of y in each case.

L L L L L I I I
0 2000 4000 6000 2000 10000 12000 14000 16000 18000

Fig. 3: Plot of |E|? vs Iteration Count for N=4

5 -

I L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Fig. 4: Plot of |E|? vs Iteration Count for N=16

I I I I I
200 400 600 800 1000 1200

Fig. 5: Plot of |E|? vs Iteration Count for N=64

Il Il Il Il Il
o 100 200 300 400 500 600
Iteration ()

Fig. 6: Plot of |E|? vs Iteration Count for N=128

VI. COMPARISON OF CONVERGENCE RATES

A study of different convergence rates vs N was performed.
Since the parameter p is a step size, it determines how fast
or slow the algorithm converges. A large p will lead to
quicker convergence. However, a very large value may result in
instability of the algorithm and the coefficients of the filter B(i)
can become unbounded (overflow). Here convergence rates for
a slow and fast convergence are shown for N=64 and N=128.

Convergence Plot for N=54, Mu=0.0005 (slow) Convergence Plot for N=54, Mu=0.006 (fast)

10

A0t 4

20t 4

1 1 1 1 1 _SD 1 1 1 1 1
200 400 &00 800 1000 1200 0 200 400 &00 300 1000 1200

Convergence Plot for N=128, Mu=0.0005 (slow) Convergence Plot for N=128, Mu=0.004 (fast)
10 r T . T T 10 r . . . T

100 200 300 400 500 B00 0 100 200 300 400 500 B00

Fig. 8: Slow and Fast Convergence Rates for N=64 and N= 128

Far MN=125, Mu=0.006

lteration Count (k)

Frame Length (n)
Fig. 9: 3-D Mesh Plot

Plot of [E(I? in dE vs Iteration Count for N=255
10 T T T T

[EQR in 4B

5 1 1 1
1] 50 100 150
Heration Count ()

I I
200 250 300

Fig. 7: Plot of |E|? vs Iteration Count for N=256

VII. CONVERGENCE CURVES FOR SPEECH CORRUPTED
BY MUSIC

Comvergence Rate for N=4
T T

L L L L I I I I
0 2000 4000 B000 2000 10000 12000 14000 16000 18000

Fig. 10: Plot of |E|? vs Iteration Count for N=4

Comvergence Cune for N=16
5 T T

I L L L L L L L
0 =00 1000 1500 2000 2500 3000 3500 4000 4500

Fig. 11: Plot of |E|? vs Iteration Count for N=16

Convergence Curve for N=G4
10 T T T

I I I 1 1
200 400 600 800 1000

Plot of |E|? vs Iteration Count for N=64

1200

o> O

Convergence Cure for N=128

o T T T

o0 1 1 1 1 1
o 100 200 300 400 500

Fig. 13: Plot of |E|? vs Iteration Count for N=128

Convergence Curve for N=256

500

15 T T T

20 L 1 | L L
a 200 250

Fig. 14: Plot of |E|? vs Iteration Count for N=256

3D plot of B{k nyvs k vs n

300

Hteration Number (k) Sample Number ()

Fig. 15: 3-D plot of B(k,n) vs k vs n

VIII. REMARKS

. What do the frequency components B(k) represent in

terms of filter properties?

. They represent the frequency domain filter coefficients.
. What is the effect of N on the SNR?
. As N increases SNR for noise signal increases while it

decreases for the music signal. Probably because of the
uniform presence of the noise signal. While the music
signal is present in select frequencies. Hence does not
get filtered as well.

[Q.]JHow is the size of the FFT (N) related to the order
of the filter?

. If the order of the filter is less than size(fft(N)) redun-

dancy is introduced,if it is greater than size of fft(N) the
coefficients are wasted. So the filter size should be equal
to the size of the fft(N).

140

Q. What is the effect of i on the quality of speech (small
mu vs big mu)?

A. As p increases upto a certain level,quality of speech

increases then it decreases because the coefficients of

B(z) become unbounded after a particular value causing

the loss of filtering action.

How does the SNR correlate with speech quality?

SNR and quality of speech are correlated in general

but not always. For Example, upon performing Linear

Convolution the SNR value was found to be lower than

that obtained with circular convolution even though the

speech quality is better. This is mostly because the last

frame is clipped in the processing of the algorithm.

Q. Did you observe any artifacts in your subjective evalua-
tions?

A. Initially the noise is high but it decreases as the signal

progresses,albeit a clicking sound. The clicking is signif-

icantly reduced when linear convolution is used by the

overlap and save method. It is also observed that the

clicking sound is reduced with increasing value of the

Kaiser Parameter upto a certain value beyond which the

signal begins to get distorted.

Why does the algorithm minimize e(n)?

e(n) is minimised beacuse in the speech signal, maximum

noise reduction is obtained when the difference between

the noise currupted signal and the noise is minimum.

Q. How do you determine the impulse response of the filter
from B(i)

A. Impulse response can be calculated by taking the Inverse
Fourier Transform of B(K).

>

>

IX. OBSERVATIONS

1. An application for Adaptive Filtering for noise cancelling
was demonstrated in this project.

2. The noise in the initial few frames is due to the con-
vergence of the algorithm. Once the filter adjusts its
coefficients, the noise is estimated more accurately and
the error becomes minimized.

3. The use of a Kaiser window in place of the standard rect-
angular window further increases the quality of speech
and SNR. Noise reduction is maximum for an optimal
value of f3.

4. Upon increasing the value of N beyond 512, a significant
echo is observed in the filtered signal.

5. Use of Overlab and Save Method for Linear Convolution
significantly reduces the background noise and enhances
the speech quality.

X. SCOPE FOR FURTHER RESEARCH

The LMS algorithm used here, has a slower rate of con-
vergence when compared to Recursive Least Square (RLS)
algorithms. These algorithms maybe implemented for better
noise reduction[6]. Output signal could be further processed
by echo cancellation devices.

XI. APPENDIX

A. MATLAB Code - 1

function [K,N,B]l=anc_fall2010 (N, mu,beta)
F=N; sl=zeros(l,N);s2=sl;S1l=sl;S2=s2;E=sl;e=sl;f=s1;
[sampl, fs,bits]=wavread ('musicmicl’);
[samp2]=wavread ('musicmic2’);
cs=wavread (’clean2’);

ll=length(sampl); 1l2=length (samp2);
M=min (11,12); K=fix(M/N); B(1l, :)=zeros(1,F);

for k = 1:Kn = (1:N)+(Nx(k-1));
sl (n)=diag(sampl (n)) xkaiser (N, beta);
s2 (n)=diag (samp2 (n)) xkaiser (N,beta);
S1(k,:)=fft(sl(n)); S2(k,:)=fft(s2(n));
S2_diag=diag(S2(k,:)); E(k,:)=S1(k,:)-B(k,:)~*(S2_diaqg);
B(k+1l,:)=B(k, :)+2+mu*E(k, :)* (S2_diag’);
e(k,:)=1ifft(E(k,:)); f£(k)=10%x1loglO(E(k,
end

[r,c]=size(e); el = reshape(e,1l,rxc);
dif=[cs]-sampl; %Nc=numel (dif);

SNR_bef=10%10gl0 (conj(cs)’+cs/ (conj(dif)’ «dif));
dif2=cs-el’; SNR_aft=10%x1ogl0((conj(cs)’*cs)/ (conj(dif2)
SNR=SNR_aft-SNR_bef; [str]=sprintf (’sound_out
$d’,10xbeta); cd 'C:’; wavwrite(el’, fs,bits,str)
plot (1:K, f)

1) *E(k, 1)’ /N);

B. MATLAB Code for implementation of Linear Convolution

function [SNR]=anc_fall20101 (N, mu,beta)
sl=zeros (1l,2%N);s2=sl;S1l=sl;S52=s2;E=sl;e=s1;
F=N; [sampl, fs,bits]=wavread('micl’);
[samp2]=wavread('mic2’);
[cs]=wavread (' clean2’);

o=cs (1:65280); g=sampl (1:65280);

ll=length(sampl); l2=length (samp2);
M=min (11,12); K=fix(M/N); B(1l, :)=zeros(1l,2«F);

for k = 1:K-1 n = (1:2%N)+ (N« (k-1));
sl (n)=diag(sampl (n))+kaiser (2«N,beta);
s2 (n)=diag (samp2 (n)) xkaiser (2«N, beta) ;
S1l(k,:)=fft(sl(n)); S2(k,:)=fft(s2(n));
S2_diag=diag(S2(k,:)); E(k,:)=S1(k,:)-B(k,:)=*(S2_diag);
B(k+1l, :)=B(k, :)+t2+«mu*E (k, :)* (S2_diag’);
e(k,:)=1ifft(E(k,:)); f(k,:)=e(k,N+1:2xN);
g(k)=10«1loglO(f(k,:)xf(k,:)"); end

[r,cl=size(f); el = reshape(f,1l,rxc);

difl=o-qg;

SNR_bef=10+x10gl0((conj(cs)’*cs)/(conj(difl)’«difl));
dif2=0-el’; SNR_aft=10x1ogl0((conj(cs)’*cs)/(conj(dif2)’
SNSEENR_aft—SNR_bef;

=sprintf (' sound_out %d’,10xbeta); cd ’'C:’;
wavwrite (el’, fs,bits,str) plot (1:K-1,q)

REFERENCES

[1] L. J. Griffiths, ”“An Adaptive Lattice Structure for Noise Cancelling
Applications” 1EEE Trans. 1978

[2] S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice-Hall, 1996.

[3] Jones, D. et al, Adaptive Filtering: LMS Algorithm, Connexions Web site.
http://cnx.org/content/m10481/2.14/, June 1,2009.

[4] M. Dentino, J. Mc.Cool, B. Widrow ”Adaptive Filtering in the Frequency
Domain” proc. IEEE(Lett.), Vol. 66, pp1658-1659, December 1978.

[5] B. Widrow ”Stationary and nonstationary learning characteristics of the
LMS adaptive filter. ” proc. IEEE(Lett.), Vol. 64, ppl1151-1162, August
1976.

[6] J.G. Proakis, D.G Manolakis, ”Digital Signal Processing : Principles,
Algorithms and Applications ” 4th Edition, Prentice-Hall, 2007.

