
1 | P a g e

SHAPE PATTERN RECOGNITION USING

EUCLIDEAN DISTANCE METHOD

Project Work Report Submitted

in partial fulfilment of the requirements for the degree of

BACHELOR OF TECHNOLOGY in

ELECTRICAL AND ELECTRONICS ENGINEERING

By

Rushil Anirudh

(06EE49)

Srinivas L Naik

(06EE59)

Sunil Saraswat Swain

(06EE63)

Under the Guidance of

Dr. Ashvini Chaturvedi

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGYKARNATAKA SURATHKAL,

MANGALORE – 575 025

April, 2010

2 | P a g e

DECLARATION
By the B.Tech Student(s)

We hereby declare that the Project Work Report entitled ― “Shape Pattern Recognition using

Euclidean Distance Method” which is being submitted to the National Institute of

Technology Karnataka, Surathkal for the award of the degree of Bachelor of Technology in

Electrical and Electronics Engineering is a bonafide report of the work carried out by us. The

material contained in this Project Report has not been submitted to any University or Institution

for the award of any degree.

1. Rushil Anirudh (06EE49)

2. Srinivas L Naik (06EE59)

3. Sunil Saraswat Swain (06EE63)

Department of Electrical & Electronics Engineering

Place: NITK, Surathkal

Date:

3 | P a g e

CERTIFICATE

This is to certify that the project entitled “Shape Pattern Recognition using Euclidean

Distance Method” submitted by:

1. Rushil Anirudh (06EE49)

2. Srinivas L Naik (06EE59)

3. Sunil Saraswat Swain (06EE63)

as the record of the work carried out by them, is accepted as the B.Tech Project Work Report

submission in partial fulfilment of the requirements for the award of degree of Bachelor of

Technology in Electrical & Electronics Engineering.

Guide

Dr. Ashvini Chaturvedi

Head of Department

Prof.P Durai Kannu

Place: NITK, Surathkal

Date:

4 | P a g e

ACKNOWLEDGEMENT

The successful completion of our project gives us an opportunity to convey heartfelt

regard to each and everyone who has been instrumental in shaping up the final

outcome of this project.

We would like to thank Dr. Ashvini Chaturvedi, Department of Electrical and

Electronics Engineering, NITK - Surathkal for his able guidance and encouragement

during our project work which was of great help in the successful completion of the

project.

We thank Dr. P.Duraikannu, Professor and HOD, Department of Electrical and

Electronics Engineering, NITK Surathkal for his support and help to utilize the

resources available at Department Lab.

Finally we would like to thank everyone who was a great source of help during

various stages of the project.

5 | P a g e

CONTENTS

1. Abstract... 6

2. Base Paper Review... 7

3. Approaches.. 8

4. Flow Diagram... 9

5. Methodology.. 11

6. Summary.. 13

7. Results.. 14

8. Conclusions.. 17

9. Future Applications.. 17

10. Appendix I.. 18

11. Appendix II.. 21

6 | P a g e

Abstract

Shape recognition has been a problem that has been approached from a large number

of perspectives, as discussed later. It has been seen as a critical component in man’s

effort to emulate his own intelligence. Shape recognition poses special problems – in

terms of not just distance differences and hence size variation, but also in terms of

rotational variance. Even a few degrees of difference has been known to cause

recognition difficulties. This project is a bid to develop a fresh algorithm that can

solve the problems of size and shape variant difficulties. One of the most classical

applications of shape recognition has been hand gesture recognition and it will be

exactly this problem that we shall try and solve using our proposed algorithm. Given

ahead are known approaches to the problem, the logical flow of our approach, the

MATLAB code, the outputs and results along with a compilation of possible

improvements and final conclusions. A reference for future works has also been

provided.

7 | P a g e

Base Paper Review :

The following was used as a base paper:

E. Sanchez-Nielsen, L. Antón-Canalis, M. Hernan-dez-Tejera, Hand gesture

recognition for human-machine interaction, Journal of WSCG, Vol.12,No.1-3

(February 2003).

The aim of this paper is the proposal of a real time vision system for its application

within visual interaction environments through hand gesture recognition, using

general-purpose hardware and low cost sensors, like a simple personal computer and

an USB web cam, so any user could make use of it in his office or home. The most

important part of the recognition process is a robust shape comparison carried out

through a Hausdorff distance approach, which operates on edge maps. The use of a

visual memory allows the system to handle variations within a gesture and speed up

the recognition process through the storage of different variables related to each

gesture.

Initially the segmentation was done using Hue-Saturation-Intensity (HSI) parameters.

This was followed by identification of the biggest binary linked object (blob). The

sample image is then compared to the images in the visual memory system for a good

match. The matching algorithm used here is the Hausdorff distance method.

Hausdorff Distance ranks each point of an array A based on its distance to the nearest

point in a second array B and then uses the largest ranked such point as the measure of

distance.

Hausdorff Distance (HD):

H(A, B) = max(h(A,B),h(B, A))

where,

h(A,B)=maxaϵA min bϵB ||a-b||

The function h (A,B) is called the directed Hausdorff distance from set A to B.

The HD algorithm is complicated for Shape Matching and results can be achieved

with reasonable accuracy even by considering a few selected points instead of the

entire image. Another important drawback of this algorithm is that it fails to

incorporate slight changes in position of the object in consideration.

8 | P a g e

APPROACHES

1) The shape matching processes can be classified into two levels, namely the global

shape matching and local shape matching. Global shape matching refers to the

comparison of the overall shape of an object which deals with shape similarity.

Local shape matching refers the matching of a pair of points in two similar shapes

which deals with feature correspondence.

a) Common shape matching methods include :

1. Shape distribution: Reference [11] applied the shape distribution method

to meshed and faceted representations and used the membership

classification distribution as the basis for a shape classification histogram.

2. Shape context: Reference [4] used shape context method to represent each

point in the object as the relative vector of each point on an object relative

to all remaining points, in an L2 Euclidean metric. This leaded to an

efficient representation of characteristics histograms useful for shape

comparison. This method gives reasonable good performance in shape

matching and feature correspondence but it suffers from high computational

cost.

3. Curvature scale space : The curvature scale space method in [17, 18] took

advantage of connectivity between contour points and the shape of object is

represented by a graph of the parametric positions of the curvature extreme

points of extreme curvature on the contour, however only curvature extreme

points can be extracted.

4. The Euclidean Distance Method: The centroid of the image and its

distance of boundary is calculated. These distances are then compared with

the existing database images and the best match is found.

5. Vector Method: An array of distance as well as angles between the

centroid and the boundary point are calculated. A few selected points from

the incoming image are compared with the existing database.

6. Shifting of the Origin Method: A new set of coordinates are calculated

with respect to the Centroid position.

9 | P a g e

Flow Diagram

Creation of uniform shape.

Patches of black and white are removed using a series
of MATLAB functions.

MATLAB functions imerode() and imdilate() are used.

Identification of blob

The biggest blob that is actually the subject (like palm
during hand gesture recognition) is recognised.

MATLAB function bwlabel() is used.

Shape Segmentation (Threshold Based)

Identification of the pixels concerened, based on
required R,G and B thresholding.

Creation of the binary image based on these thresholds.

Sampling

A section of the identified edge is to be used to save computing time and memory. Every 3rd and 5th
point is used.

Centroid Calculation.

Based on coordinates of the edge-points of the
blob, the centroid is calculated.

Simple addition of coordinates and dividing the
total number of points will calcluate the centroid.

Edge Tracing.

Edge of blob is calculated using standard
intensity-based algorithms.

MATLAB functions edge() is used.

A

10 | P a g e

Normalizing.

The normalized distances are actually calculalted by dividing the real distances with the average distances of all the points from
the centroid.

Profile Making.

Then normalized distances from the centroid are plotted in
order from the first to the last point.

Normal stem() functions is used for comfortable evaluation.

Boundary Tracing.

Coordinates of the edges is calculated for further evaluation.
The start of the edge is calculated using a simple for loop.

MATLAB function bwtraceboundary() is used.

Rotational Matching

The incoming image is compared with the existing database image and one of them is rotated through one step from right to left
and coordinate-wise matching is done to find out the differneces. The smallest difference indicates the best match.

A

11 | P a g e

Methodology:

I. Segmentation: This can be achieved in several ways

a. RGB Values – Here a fixed range of Red/Green/Blue values of the

pixels are conveniently chosen to distinguish the object from the

background.

b. Normalised RGB Values – Depending upon the ratio of one of the

colour components, segmentation is done.

c. HSI/HSV – The Hue, Saturation and Intensity/Value decide the

segmentation.

In this experiment, the method using RGB Values is used for segmentation.

II. Binary Linked Object Identification – The binary equivalent of the object

is created by thresholding the incoming image. The biggest blob is found

using MATLAB® function bwlabel(C,Appendix 2)

III. Noise Removal – Since a few pixels in the image may not fall in the range

of the chosen RGB values, it accounts as noise. This can be reduced greatly

by using standard MATLAB® functions like imdilate (A ,Appendix 2)

and imerode (B, Appendix 2). While the former enhances the object or

the foreground, the latter enhances the background.

IV. Edge Detection – The MATLAB® function edge (E, Appendix 2)

outlines the binary image. The boundary coordinates of the outline are

calculated using MATLAB® function bwboundarytrace (D,

Appendix 2). Using a known edge point, this function returns an array with

the coordinates of the boundary.

V. Calculation of Euclidean Distances

a. The position of the centroid is calculated using the following formula:

CX = Σxi /n CY = Σyi /n

Where, n-Number of points and x,y are the coordinates

b. The distance of the edge point from the center is calculated using the

standard Euclidean formula which is : 𝑥 − 𝐶𝑥 2 + 𝑦 − 𝐶𝑦 2

c. Once the distances are calculated, the values are normalized by dividing

the all the elements with the average value of the array. This takes care

of positioning of the object with respect to the camera.

VI. Pattern Matching – Each image in the database is associated with a unique

set of normalized Euclidean Distances. The corresponding array of the

incoming image is compared with the existing arrays to find a best match.

The best match is defined as the array which yields the least difference.

VII. Rotational invariance- Since the angle of the object may vary with every

incoming image the program is made rotational invariant. Every point of the

12 | P a g e

object is shifted in a cyclic manner and the corresponding image is then

compared with the stored images respectively. At the point of matching, the

difference between the rotated image and the stored image is the least value.

This is achieved by using MATLAB® function circshift (F,

Appendix 2). Circshift shifts the column of the matrix cyclically. The

differences are stemmed and the point of least difference is the best possible

match.

13 | P a g e

Summary

A database is created using a set of standard pictures. The given image is first

converted to a binary image by thesholding. Based on the pixel values (falling in a

fixed range of R, G and B) thresholding is done. The biggest blob is found using

bwlabel()(C, Appendix 2). After using matlab functions including imdilate(A,

Appendix 2) and imerode(B, Appendix 2), the edge of the blob is found. The

centroid of the image is got by the summation of the coordinates of the individual

points. The boundary is located using a MATLAB function bwtraceboundary

(D, Appendix 2) and a known edge point. Sampling is done to increase the time and

memory efficiency. The Euclidean distance of each point from the calculated centroid

is evaluated and normalization is done by dividing the individual distance with the

average of the net distance. To incorporate rotational invariance, the given image is

rotated and subtracted from the standard images. The standard image which shows the
least possible difference is taken as the best match.

14 | P a g e

Results

 Incoming image

Stemmed Graphs showing comparison with the existing images

15 | P a g e

Best Match

16 | P a g e

Algorithm Usage in Future Applications

Initial Image from Webcam (RGB)

Colour Segmentation based on on-the-spot readings.

Biggest blob from the previous image is found and the edges detected to yield the boundary that is

traced and a profile made

17 | P a g e

Conclusions

A reasonable accuracy can be obtained with the Euclidean distance method by using a

finite set of points. The position and the orientation of the object does not affect the

working of the algorithm. Size invariance was achieved through normalisation to

reduce the error caused due to the positioning of the object. The same image
irrespective of its size always yields the same result.

The change in the angle of the object is also achieved by circular shift. The given

image was rotated through all the points and compared with the images. Hence the

best possible match could easily be found corresponding to a particular image.
Rotational invariance was one of the major setbacks of the Hausdorff method.

The simplicity and easy to implement nature of the algorithm gives it an edge over the
Hausdorff method.

Applications and future work

1. Since the algorithm is generic and simple to implement, it can be modified to

be used in all applications requiring pattern recognition like – gesture

recognition etc.

2. Improved segmentation by using probabilistic models for variations in light.

3. Rotational invariance can also be achieved using the vector approach.

18 | P a g e

Appendix 1

CODE

clc

clear

warning off

t = ['trapedown']

title = [t '.jpg'];

 bin(:,:) = 0;

 im = imread(title);

 r = size(im,1);

 c = size(im,2);

 im1 = im;

 im1(:,:,:) = 0;

 bin(r,c) = 0;

 for i = 1:r

 for j = 1:c

 if (im(i,j,1)>200 && im(i,j,1)<250 && im(i,j,2)>10 &&

im(i,j,2)<40 && im(i,j,3)>10 && im(i,j,3)<50)

 im1(i,j,1) = im(i,j,1);

 im1(i,j,2) = im(i,j,2);

 im1(i,j,3) = im(i,j,3);

 bin(i,j) = 1;

 end

 end

 end

 [L x] = bwlabel(bin,8);

 numb(x) = 0;

 for i = 1:r

 for j = 1:c

 for k = 1:x

 if L(i,j) == k

 numb(k) = numb(k) + 1;

 end

 end

 end

 end

 [qaz wsx] = max(numb);

 for i = 1:r

 for j = 1:c

 if L(i,j) == wsx

 bin(i,j) = 1;

 else

 bin(i,j) = 0;

 end

 end

 end

19 | P a g e

 rsum = 0;

 csum = 0;

 num = 0;

 for i = 1:r

 for j = 1:c

 if bin(i,j) == 1

 rsum = rsum + i;

 csum = csum + j;

 num = num + 1;

 end

 end

 end

 se = strel('disk',3,0);

 bin = imdilate(bin,se);

 bin = imerode(bin,se);

 bin = imdilate(bin,se);

 bin = edge(bin);

 for i = 1:r

 for j = 1:c

 if bin(i,j) == 1

 start_r = i;

 start_c = j;

 end

 end

 end

 B = bwtraceboundary(bin,[start_r start_c],'N');

 rsample = B(:,1);

 csample = B(:,2);

 r_centre = rsum/num;

 c_centre = csum/num;

 bin(floor(r_centre),floor(c_centre)) = 128;

 qaz = size(rsample,1);

 rsample = rsample(1:3:end);

 csample = csample(1:3:end);

 n_points = size(rsample,1);

 bina = bin;

 bina(:,:) = 0;

 for i = 1:size(rsample,1)

 bina(rsample(i,1),csample(i,1)) = 255;

 end

 imshow(bina)

20 | P a g e

 for i = 1:n_points

 euc_dist(i) = sqrt((rsample(i) - r_centre)^2 + (csample(i)

- c_centre)^2);

 end

 euc_dist = euc_dist./(sum(euc_dist)/numel(euc_dist));

 for i = 1:n_points

 angle(i) = atan2(rsample(i) - r_centre, csample(i) -

c_centre);

 end

% imtool(bin);

 bin = uint8(bin);

% figure

 % stem(euc_dist);

21 | P a g e

 Appendix 2

A. Imdilate – IMDILATE Dilate image.

 IM2 = IMDILATE(IM,SE) dilates the grayscale, binary, or packed binary image IM,

returning the dilated image, IM2. SE is a structuring element object, or array of

structuring element objects, returned by the STREL function. If IM is logical

(binary), then the structuring element must be flat and IMDILATE performs binary

dilation. Otherwise, it performs grayscale dilation. If SE is an array of structuring

element objects, IMDILATE performs multiple dilations, using each structuring

element in SE in succession.

 Examples

 Dilate the binary image in text.png with a vertical line:

 originalBW = imread('text.png');

 se = strel('line',11,90);

 dilatedBW = imdilate(originalBW,se);

 figure, imshow(originalBW), figure, imshow(dilatedBW)

 Dilate the grayscale image in cameraman.tif with a rolling ball:

 originalI = imread('cameraman.tif');

 se = strel('ball',5,5);

 dilatedI = imdilate(originalI,se);

 figure, imshow(originalI), figure, imshow(dilatedI)

 Determine the domain of the composition of two flat structuring elements by

dilating the scalar value 1 with both structuring elements in sequence, using the 'full'

option:

 se1 = strel('line',3,0);

 se2 = strel('line',3,90);

 composition = imdilate(1,[se1 se2],'full')

B. Imerode

M2 = IMERODE(IM,SE) erodes the grayscale, binary, or packed binary image

IM, returning the eroded image, IM2. SE is a structuring element object, or

array of structuring element objects, returned by the STREL function. If IM is

logical and the structuring element is flat, IMERODE performs binary erosion;

otherwise it performs grayscale erosion. If SE is an array of structuring element

objects, IMERODE performs multiple erosions of the input image, using each

structuring element in succession.

22 | P a g e

Examples

 Erode the binary image in text.png with a vertical line:

 originalBW = imread('text.png');

 se = strel('line',11,90);

 erodedBW = imerode(originalBW,se);

 figure, imshow(originalBW)

 figure, imshow(erodedBW)

 Erode the grayscale image in cameraman.tif with a rolling ball:

 originalI = imread('cameraman.tif');
 se = strel('ball',5,5);

 erodedI = imerode(originalI,se);

 figure, imshow(originalI), figure, imshow(erodedI)

C. Bwlabel

L = BWLABEL(BW,N) returns a matrix L, of the same size as BW, containing

labels for the connected components in BW. N can have a value of either 4 or

8, where 4 specifies 4-connected objects and 8 specifies 8-connected objects; if

the argument is omitted, it defaults to 8. The elements of L are integer values

greater than or equal to 0. The pixels labeled 0 are the background. The pixels

labeled 1 make up one object, the pixels labeled 2 make up a second object,

and so on.

 [L,NUM] = BWLABEL(BW,N) returns in NUM the number of connected

objects found in BW.

Example:
 BW = logical([1 1 1 0 0 0 0 0
 1 1 1 0 1 1 0 0

 1 1 1 0 1 1 0 0

 1 1 1 0 0 0 1 0

 1 1 1 0 0 0 1 0

 1 1 1 0 0 0 1 0

 1 1 1 0 0 1 1 0

 1 1 1 0 0 0 0 0]);

 L = bwlabel(BW,4);

 [r,c] = find(L == 2);

D. Bwtraceboundary

B = BWTRACEBOUNDARY(BW,P,FSTEP) traces the outline of an object in

a binary image BW, in which nonzero pixels belong to an object and 0-pixels

constitute the background. P is a two-element vector specifying the row and

23 | P a g e

column coordinates of the initial point on the object boundary. FSTEP is a

string specifying the initial search direction

 for the next object pixel connected to P. FSTEP can be any of the following

strings: 'N','NE','E','SE','S','SW','W','NW', where N stands for north, NE stands

for northeast, etc. B is a Q-by-2 matrix, where Q is the number of boundary

pixels for the region. B holds the row and column coordinates of the boundary

pixels.

BW = imread('blobs.png');

 imshow(BW,[]);

 s=size(BW);

 for row = 2:55:s(1)

 for col=1:s(2)

 if BW(row,col),

 break;

 end

 end

 contour = bwtraceboundary(BW, [row, col], 'W', 8,

50,...

 'counterclockwise');

 if(~isempty(contour))

 hold on;

plot(contour(:,2),contour(:,1),'g','LineWidth',2);

 hold on; plot(col, row,'gx','LineWidth',2);

 else

 hold on; plot(col, row,'rx','LineWidth',2);

 end

 end

E. Edge

EDGE takes an intensity or a binary image I as its input, and returns a binary

image BW of the same size as I, with 1's where the function finds edges in I

and 0's elsewhere.

I = imread('circuit.tif');

 BW1 = edge(I,'prewitt');

 BW2 = edge(I,'canny');

 figure, imshow(BW1)

 figure, imshow(BW2)

F. Circshift

B = CIRCSHIFT(A,SHIFTSIZE) circularly shifts the values in the array A by

SHIFTSIZE elements. SHIFTSIZE is a vector of integer scalars where the N-th

element specifies the shift amount for the N-th dimension of array A. If an

element in SHIFTSIZE is positive, the values of A are shifted down (or to the

right). If it is negative, the values of A are shifted up (or to the left).

24 | P a g e

 Examples:
 A = [1 2 3;4 5 6; 7 8 9];

 B = circshift(A,1) % circularly shifts first dimension

values down by 1.

 B = 7 8 9

 1 2 3

 4 5 6

 B = circshift(A,[1 -1]) % circularly shifts first

dimension values

 % down by 1 and second

dimension left by 1.

 B = 8 9 7

 2 3 1

 5 6 4

